sábado, 11 de diciembre de 2010

Transformadores


Se denomina transformador a un dispositivo electrónico que permite aumentar o disminuir la tensión en un circuito eléctrico de corriente alterna, manteniendo la frecuencia. La potencia que ingresa al equipo, en el caso de un transformador ideal (esto es, sin pérdidas), es igual a la que se obtiene a la salida. Las máquinas reales presentan un pequeño porcentaje de pérdidas, dependiendo de su diseño, tamaño, etc.

El transformador es un dispositivo que convierte la energía eléctrica alterna de un cierto nivel de voltaje, en energía alterna de otro nivel de voltaje, por medio de la acción de un campo magnético. Está constituido por dos o más bobinas de material conductor, aisladas entre sí eléctricamente por lo general arrolladas alrededor de un mismo núcleo de material ferromagnético. La única conexión entre las bobinas la constituye el flujo magnético común que se establece en el núcleo.

Los transformadores son dispositivos basados en el fenómeno de la inducción electromagnética y están constituidos, en su forma más simple, por dos bobinas devanadas sobre un núcleo cerrado de hierro dulce o hierro silicio. Las bobinas o devanados se denominan primario y secundario según correspondan a la entrada o salida del sistema en cuestión, respectivamente. También existen transformadores con más devanados; en este caso, puede existir un devanado "terciario", de menor tensión que el secundario.


CORRIENTE ALTERNA

CORRIENTE ALTERNA

Video sobre circuitos RLC

Aca les dejamos un video sobre los circuitos RLC

miércoles, 8 de diciembre de 2010

Oscilaciones Electromagneticas... en la UNI

Clase del Lic. Percy Cañote, docente de la Facultad de Ingenieria Industrial y de Sistemas de la Universidad Nacional de Ingenieria de Lima, Perú.


OSCILACIONES ELECTROMAGNÉTICAS

Oscilaciones electromagneticas

En los circuitos RLC se acoplan resistencias, capacitores e inductores. Existe también un ángulo de desfasaje entre las tensiones y corrientes (y entre las potencias), que incluso puede llegar a hacerse cero. En caso de que las reactancias capacitivas e inductivas sean de distinto valor para determinada frecuencia, tendremos desfasajes.

Dependiendo de cual de las reactancias sea mayor podremos afirmar si se trata de un circuito con características capacitivas o inductivas y por lo tanto si la tensión adelanta a la corriente (y con qué ángulo) o si la corriente adelanta a la tensión.

A continuación detallamos los valores de un circuito RLC simple en serie.


Circuitos RLC en Corriente Alterna

INDUCTANCIA Y CIRCUITOS RL

El Prof. Walter Lewin del MIT explicando los temas de Inductancia, circuitos RL y energía del campo magnético.
Para ver la transcripción de este vídeo en formato PDF has click aquí

INDUCTORES

Los inductores o bobinas son elementos lineales y pasivos que pueden almacenar y liberar energía basándose en fenómenos relacionados con campos magnéticos. Una aplicación de los inductores, consistente en bloquear (“choke” en inglés) las señales de AC de alta frecuencia en circuitos de radio, dio origen a que con dicho término (choque) se haga referencia a los inductores que se emplean en aplicacione

s donde su valor no es crítico y que por lo tanto admiten grandes tolerancias.

Básicamente, todo inductor consiste en un arrollamiento de hilo conductor. La inductancia resultante es directamente proporcional al número y diámetro de las espiras y a la permeabilidad del interior del arrollamiento, y es inversamente proporcional a la longitud de la bobina.

1. Modelo Equivalente

Los inductores ideales no disipan energía como lo hacen los resistores. Pero en la práctica, el inductor real presenta una resistencia de devanado que disipa energía. A continuación figura un modelo práctico (simplificado) de inductor.

Clasificación

Según el núcleo o soporte:

Núcleo de aire: el devanado se realiza sobre un soporte de material no magnético (fibra, plástico.). En los casos donde no se utiliza soporte, la bobina queda conformada sólo debido a la rigidez mecánica del conductor.

• Núcleo de hierro: como tiene mayor permeabilidad que el aire (10 a 100), aumenta el valor de la inductancia. Sin embargo, sólo se emplea en bajas frecuencias porque a altas frecuencias las pérdidas son elevadas. Aplicaciones: fuentes de alimentación y amplificadores de audio.

• Núcleo de ferrita: las ferritas son óxidos de metales magnéticos, de alta permeabilidad (10 a 10000) que además son dieléctricos. Existe una gran variedad en el mercado en función de la frecuencia de trabajo.

Nota: radiofrecuencia (100kHz a 100GHz) <> audiofrecuencia (20Hz a 20kHz).

Según la forma constructiva:

• Solenoides: • Toroides:

Según la frecuencia de la corriente aplicada:

• Alta frecuencia: de reducido tamaño y número de espiras • Baja frecuencia: de mayor tamaño y número de espiras

Según el recubrimiento: -, plástico, resina, metal (apantalladas).

Según la característica de su valor: fijos y ajustables.

Según el tipo de montaje: de inserción y SMD.

Codificación

Los inductores moldeados suelen presentar un sistema de código de colores similar al de los resistores.

Alternativa: de acuerdo con el estándar EIA (Electronic Industries Association), si una de las bandas que corresponden a las cifras significativas es dorada, ésta representa al punto decimal y la banda que antes actuaba como multiplicador pasa a ser ahora otra cifra significativa.

Valores Estándares

Los valores más comunes de inductores moldeados corresponden a la serie E12 (10, 12, 15, 18, 22, 27, 33, 39, 47, 56, 68, 82).

Criterios De Selección A continuación se enumeran las características técnicas que hay que tener en cuenta a la hora de seleccionar los inductores para determinada aplicación.

• Valor inductivo

• Tolerancia

• Tamaño y requisitos de montaje

• Margen de frecuencias o frecuencia central de trabajo

• Capacidad parásita entre bornes: tiene influencia al trabajar en alta frecuencia porque puede hacer que el inductor se comporte como un cortocircuito.

• Resistencia de aislamiento entre espiras: si se supera el voltaje máximo entre terminales, se perfora el aislante del hilo conductor.

• Corriente admisible por el hilo conductor

• Q (factor de calidad o de mérito): se define como la relación entre la reactancia inductiva y la resistencia óhmica del inductor (Q=2*pi*f*L / R). Es deseable que la resistencia sea baja y por ende que el Q sea alto. Según la fórmula, Q tendría que aumentar con la frecuencia, sin embargo no es así porque también aumenta la resistencia.

Los fabricantes informan sobre el Q del inductor a la frecuencia de trabajo o bien presentan curvas de Q(f). Los Q de inductores para aplicaciones de radiofrecuencia oscilan entre 50 y 200.

• Coeficiente de temperatura

Consideraciones Prácticas

Corriente máxima: dada por las limitaciones físicas del hilo conductor (resistencia y máxima disipación de potencia).

Interferencia: los campos magnéticos de los inductores pueden afectar el comportamiento del resto de los componentes del circuito, especialmente de otros inductores. La proximidad de dos inductores puede dar origen a una inductancia mutua que causará efectos no deseados, razón por la cual los diseñadores tienden a elegir capacitores sobre inductores para realizar tareas similares.

Prueba: factores como el desgaste, el sobrecalentamiento y la corriente excesiva pueden ocasionar cortocircuitos entre las espiras o inclusive circuitos abiertos. Esta última condición se verifica fácilmente con un óhmetro, pero la condición de cortocircuito entre espiras es más difícil de determinar dada su inherente baja resistencia entre terminales.

INDUCTANCIA.. LO HECHO EN CLASES...

INDUCTANCIA

EL FENOMENO DE LAS INDUCTANCIAS

La inductancia es el campo magnético que crea una corriente eléctrica al pasar a través de una bobina de hilo conductor enrollado alrededor de la misma que conforma un inductor. Un inductor puede utilizarse para diferenciar señales cambiantes rápidas o lentas. Al utilizar un inductor con un condensador, la tensión del inductor alcanza su valor máximo a una frecuencia dependiente de la
capacitancia y de la inductancia.
La inductancia depende de las características físicas del conductor y de la longitud del mismo. Si se enrolla un conductor, la inductancia aumenta. Con muchas espiras se tendrá más inductancia que con pocas. Si a esto añadimos un núcleo de ferrita, aumentaremos considerablemente la inductancia.

Existen fenómenos de inducción electromagnética generados por un circuito sobre sí mismo llamados de inducción propia o autoinducción; y los producidos por la proximidad de dos circuitos llamados de inductancia mutua.
Un
ejemplo de inductancia propia, lo tenemos cuando por una bobina circula una corriente alterna. Como sabemos, al circular la corriente por la bobina formará un campo magnético alrededor de ella, pero al variar el sentido de la corriente también lo hará el campo magnético alrededor de la bobina, con lo cual se produce una variación en las líneas del flujo magnético a través de ella, esto producirá una fem inducida en la bobina.
La fem inducida con sus respectivas corrientes inducidas son contrarias a la fem y la corriente recibidas. A este fenómeno se le llama autoinducción.
Por definición: la autoinducción es la producción de una fem en un circuito por la variación de la corriente en ese circuito. La fem inducida siempre se opone al cambio de corriente. La capacidad de una bobina de producir una fem autoinducida se mide con una magnitud llamada inductancia.





LEY DE FARADAY

LEY DE FARADAY

domingo, 5 de diciembre de 2010

CAMPO MAGNETICO: LEY DE AMPERE

Campo Magnético.Ley de Ampere

VIDEO DEL MIT SOBRE LA LEY DE FARADAY

El MIT (Massachusetts Institute of Technology) es un gran referente en cuanto a ciencias y tecnologia en el mundo entero. Por esta razon, nos gustaria compartir este video de ua de las clases del MIT acerca de la Ley de Faraday.

LEY DE FARADAY

La Ley de Faraday está basada en los experimentos que hizo Michael Faraday en 1831 y establece que el voltaje (FEM, Fuerza Electromotriz Inducida) inducido en una bobina es directamente proporcional a la rapidez de cambio del flujo magnético por unidad de tiempo en una superficie cualquiera con el circuito como borde:
Es algo así como la parte contraria al trabajo de William Sturgeon, que ideó el electroimán. En este caso, se provoca un campo magnético debido a un flujo de corriente eléctrica. En cuanto cesa la corriente, cesa el campo magnético.

En el caso que nos ocupa, provocamos variaciones en el flujo magnético que provoca una fuerza electromotriz, manteniendo una diferencia de potencial entre dos puntos de un circuito abierto. Con esto, podemos provocar una corriente eléctrica.

Matemáticamente se expresa como indicamos en la ecuación de arriba. Gracias al trabajo de Michael Faraday se desarrollaron la mayor parte de las máquinas, hasta algo tan cotidiano como una vitrocerámica de inducción. Como vemos, la variabilidad del campo magnético está dado por la derivada (si el campo es constante, la derivada es cero y no se provoca fuerza electromotriz alguna).

ACERCA DE FARADAY...

Michael Faraday nacio en Inglaterra en 1791. Es considerado como uno de los mas importantes fisicos de la historia de la humanidad. A temprana edad tuvo que empezar a trabajar, primero como repartidor de periódicos, y a los catorce años en una librería, donde tuvo la oportunidad de leer algunos artículos científicos que lo impulsaron a realizar sus primeros experimentos.
Después de unos años, gracias a la oportunidad que le dio un cliente, pudo asistir a las conferencias sobre temas de química que Humphry Davy daba en Royal lnstitution. Faraday le hizo llegar, encuadernadas, todas las notas que había tomado a lo largo de estas sesiones, acompañadas de una petición de empleo Satisfecho con el material que Faraday le había enviado, Davy lo contrató en 1812, como asistente. Comenzó su actividad realizando labores de mantenimiento, para pasar posteriormente a colaborar con el maestro en la preparación de las prácticas de laboratorio; de esta manera, se convirtió en uno más de sus discípulos.
A partir de 1821 Faraday se consagró al estudio de la electricidad y del magnetismo, campos donde iba a conseguir sus más grandes logros.
Gracias a los trabajos de Ampére y Oersted, Faraday conocía que una corriente eléctrica generaba campos magnéticos. En 1831 intentó reproducir este proceso, pero en sentido inverso, es decir, produciendo una corriente eléctrica a de efectos electromagnéticos.

La existencia de las corrientes inducidas fue descubierta por Faraday a partir de la realización de distintos experimentos. En primer lugar, consiguió hacer una corriente eléctrica por un alambre unido a un galvanómetro, al producir un movimiento, relativo entre el alambre y un imán. Observó que, al interrumpir el movimiento, el paso de la corriente también cesaba, y en el galvanómetro rió registraba corriente alguna. La corriente es generada por una fuerza electromotriz inducida, es decir por el imán.

Posteriormente, utilizando los resultados de sus anteriores estudios, Faraday descubrió el principio del motor eléctrico, al hacer girar un imán situado sobre pivote alrededor de una bobina de alambre de cobre; como en el caso anterior a través de este procedimiento se generaba una corriente eléctrica.

La inducción electromagnética se basa fundamentalmente en que cualquier variación de flujo magnético que atraviesa un circuito cerrado genera una corriente inducida, y en que la corriente inducida sólo permanece mientras se produce el cambio de flujo magnético.

EFECTO FARADAY

Faraday llevó a cabo este descubrimiento en 1845. Consiste en la desviación del plano de polarización de la luz como resultado de un campo magnético, al atravesar un material transparente como el vidrio. Se trataba del primer caso conocido de interacción entre el magnetismo y la luz

LEY DE AMPERE

Las interacciones eléctrica y magnética pueden considerarse como manifestaciones particulares de la interacción electromagnética. Aunque ambas están asociadas con la propiedad de las partículas que conocemos como carga, la interacción magnética solo se manifiesta cuando las cargas están en movimiento. Por lo tanto, cuando por un conductor circula una corriente eléctrica, ésta creará un campo magnético en el exterior, mientras que el campo eléctrico en el exterior será prácticamente nulo al ser el conductor eléctricamente neutro -tiene tantas cargas positivas (protones) como negativas(electrones). En el caso de un conductor rectilíneo indefinido por el que circula una corriente eléctrica de intensidad I, el campo magnético B creado en un punto exterior a distancia r del centro del hilo viene dado por:
siendo las líneas de campo magnético circunferencias con centro en el conductor (ver figura 1). Por otro lado, cuando una carga q se mueve en presencia de un campo magnético B a velocidad v la carga se ve sometida a la fuerza de Lorentz (ver práctica 3) que en este caso (E = 0) viene dada por:
Si en lugar de una única carga se tiene una corriente eléctrica rectilínea de intensidad I (I=dq/dt) y de longitud L, la expresión de la fuerza sobre ella será (ley de Ampère para una corriente rectilínea):
Como consecuencia de estos dos fenómenos, dos corrientes eléctricas interaccionan entre sí. En el caso de dos tramos de corriente eléctrica rectilíneos y paralelos de longitud L, intensidad I y sentido contrario (como en la figura 1) la fuerza de interacción viene dada por:
Es decir, la fuerza será inversamente proporcional a la distancia que separa los (centros de los) conductores y directamente proporcional al producto de las intensidades de corriente eléctrica que circulan por ellos

FORMA DIFERENCIAL:

El rotacional del campo magnético puede calcularse igualmente a partir
de la ley de Biot y Savart para una densidad de corriente de volumen. El resultado es la llamada Ley de Ampère (descubierta por Maxwell):

La ley de Ampère expresa que el campo magnético, a diferencia del electrostático, sí posee fuentes vectoriales. Por tanto, el campo magnético no deriva de un potencial escalar.El que las densidades de corriente sean las fuentes vectoriales del campo magnético, esto es, proporcionales a su rotacional, es coherente con la propiedad conocida de que las líneas de campo de \mathbf{B} rotan en torno a las corrientes que lo crean.

FORMA INTEGRAL

A partir de la forma diferencial de la Ley de Ampère p

uede obtenerse una expresión integral equivalente:

que, en palabras, expresa que la circulación de \mathbf{B} a lo largo de una curva cerrada Γ arbitraria (interpretable como la rotación neta de \mathbf{B} al recorrer esta curva) es proporcional a la intensidad de corriente que atraviesa una superficie S apoyada en la curva

Γ y orientada según la regla de la mano derecha.